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This is a study of the runup of solitary waves on plane beaches. An approximate 
theory is presented for non-breaking waves and an asymptotic result is derived for 
the maximum runup of solitary waves. A series of laboratory experiments is 
described to support the theory. It is shown that the linear theory predicts the 
maximum runup satisfactorily, and that the nonlinear theory describes the climb of 
solitary waves equally well. Different runup regimes are found to exist for the runup 
of breaking and non-breaking waves. A breaking criterion is derived for determining 
whether a solitary wave will break as it climbs up a sloping beach, and a different 
criterion is shown to apply for determining whether a wave will break during 
rundown. These results are used to explain some of the existing empirical runup 
relationships. 

1. Introduction 
The problem of determining the runup of solitary waves on plane beaches usually 

arises in the study of the coastal effects of tsunamis. Tsunamis are long water waves 
of small steepness generated by impulsive geophysical events on the ocean floor or at 
the coastline. Solitary waves are believed to model some important aspects of the 
coastal effects of tsunamis well. 

The process of long-wave generation and propagation is now well understood. The 
process of long-wave runup and reflection is not. Although there is consensus that a 
suitable physical model for this process is the formalism of a long wave propagating 
over constant depth and encountering a sloping beach, there is little agreement on 
the appropriate analytical formulation. The analytical studies of this problem can be 
classified in two general groups depending on the approximation of the equations of 
motion that was used in each study to determine the runup. 

One group has studied variants of the Boussinesq equations. The state-of-the-art 
numerical solutions of these equations for solitary-wave runup are those of Pedersen 
& Gjevik (1983) and Zelt (1986) who solved the equations in Lagrangian coordinates, 
and of Kim, Liu & Ligett (1983) who used boundary-integral methods. 

The other group has used the shallow-water-wave equations. These two nonlinear 
equations result directly from the Boussinesq equations, if the effects of dispersion 
and vertical accelerations are neglected. A comprehensive review of various regular, 
weak and apparent solutions of these equations may be found in Meyer (1986). The 
classic solution of their linear form was given by Lewy (1946) for the problem of 
periodic waves climbing up a sloping beach. Carrier & Greenspan (1958) derived a 
nonlinear transformation to reduce the two equations to a single linear equation and 
they solved several initial-value problems. Keller & Keller (1964) solved the linear 
problem of a periodic wave propagating first over constant depth and then up a 



524 C. E .  Synolakis 

sloping beach. Carrier (1966) used the Carrier & Greenspan transformation to 
calculate in closed form the runup of a wave generated by a bottom displacement and 
propagating over relatively arbitrary bathymetry. The state-of-the-art numerical 
solution of the nonlinear equations was achieved with the work of Hibberd & 
Peregrine (1979) ; they were able to calculate the runup of a uniform bore on a plane 
beach. 

Despite the quality of the analytical work, fundamental unresolved questions 
about the runup of long waves still exist. The empirical relationship between the 
normalized runup and the normalized wave height that has been established in the 
series of laboratory investigations of Hall & Watts (1953), Camfield & Street (1969), 
and Kishi & Saeki (1966) remains unexplained analytically. The results of the 
available numerical solutions have not been compared with detailed amplitude- 
evolution data from the laboratory, and, as a consequence, there is little conclusive 
information about the relative importance of dispersion and nonlinearity during 
runup. There is no realization of the differences in the runup behaviour of breaking 
and non-breaking waves, and this has led to numerical results for non-breaking 
waves to be compared with laboratory data for breaking waves. Compared with 
recent advances in periodic-wave runup (Guza & Thornton 1982; Holman 1986), the 
understanding of solitary-wave runup has been fragmented and incomplete. 

In the present study an exact solution to an approximate theory will be presented 
for determining the runup and the amplitude evolution of long waves on plane 
beaches. A series of experiments will also be described and the resolution of some of 
these questions will be attempted. 

2. Basic equations and solutions 
Consider a topography consisting of a plane sloping beach of angle p, as shown in 

figure 1. The origin of the coordinate system is at  the initial position of the shoreline 
and 2 increases seaward. Dimensionless variables are introduced as follows : 

2 = xd, i0 = h, d ,  r" = qd, 92 = u(gd)i, t" = t (d /g)$ .  

q is the amplitude, u is the depth-averaged velocity, and h, is the undisturbed water 
depth. The topography is described by 

h,(x) = x t anp  when x < cot@ ( 2 . 1 ~ )  

and h,(x) = 1 when x > cotp. (2.1 b)  

Consider a propagation problem described by the shallow-water-wave equations 

h, + (hu), = 0 ( 2 . 2 ~ )  

and ut+uu,+q, = 0,  (2.2b) 

where h(x ,  t )  = h,(x) +?I(%, t ) .  

2.1. Linear theory 
The system of equations (2.2) can be linearized by retaining the first-order terms 
only. The following equation results : 

Ttt - (Tzho), = 0.  (2.3) 

The solution for constant depth is 

r when h,(x) = 1 ,  ( 2 . 4 ~ )  r ( x ,  t )  = 
e-ik(x+ct) + A  eik(z-ct) 
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FIQURE 1. A definition sketch for a sblitary wave climbing up a sloping beach. All variables 
except B are dimensional. 

and the solution for variable depth and finite at the shoreline is 

~ ( x ,  t )  = B(k, /3) Jo(2k(x cot 8)’) e-ikct when h,(z) = x tan /3. (2.4b) 

A, is the amplitude of the incident wave, A, that of the reflected wave, B is the 
amplification factor, k is the wavenumber and c = 1. Keller & Keller (1964) presented 
another steady-state solution for the combined topography defined by (2.1). They 
matched the outer solution (2.4a) and its 2-slope to the inner solution (2.4b) and its 
x-slope, at x = X, = cot p, the toe of the beach, and they derived the following values 
for the reflected-wave amplitude and the amplification factor for an incident wave of 
the form ~(z, t )  = A, e-i(z+et) : 

and 

. J0(2k cot/3) 
A,( k, /3, A,) = A, exp [ - 2ik cot /3+ 2 arctan 

2 exp [ - ik cot t!?l A, 
= J0(2k cotl)-iJ1(2k cotp)’ B(k’B’ 

( 2 . 5 ~ )  

(2.5b) 

2.2. Exact solutions of the linear theory 
This formalism will now be used to study the behaviour of more general waveforms 
approaching the sloping beach. Since the governing equation (2.3) is linear and 
homogeneous, then, as Stoker (1947) pointed out, the standing-wave solution (2.4) 
can be used to obtain travelling-wave solutions by linear superposition. When a 
boundary condition is specified, the solution follows directly from the Fourier 
transform of the equation. For example, when the incident wave is of the form 

q(X,, t) = @(k) e-Ikct dk ,  

then the transmitted wave to the beach is given by 

This solution is only valid when x 3 0; when x < 0, (2.3) does not reduce to Bessel’s 
equation. To obtain details of the motion in this case, one must solve the nonlinear 
set (2.2). 

When initial values are available, it is necessary to use a different method. The 
standard practice is to use Hankel transform techniques ; the substitution [ = xi 
transforms (2.3) into the equation : va+ ( 1/C)qs = 4 cot Prtt, and the solution follows 
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directly as a Hankel transform integral (Carrier 1966; Tuck & Hwang 1972). 
Alternatively, one may use the expansion 

m 

~ ( 6 , t )  = Z Cn(t)Jo(jn 5)  
n-1 

where jn is the nth zero of J,. The coefficients of the Fourier-Bessel series can be 
found directly from the series expansion by using the orthogonality properties of the 
Bessel functions : n f l  

s is the integration variable. c,(t) can then be determined explicitly from 

and the appropriate initial conditions. A similar solution is presented in Carrier, 
Krook & Pearson (1966) for an equation that describes the motion of a hanging 
chain. 

2.3. Nonlinear theory 
To solve the nonlinear set (2.2) for the sloping-beach case, h,(x) = x tan@, Carrier & 
Greenspan (1958) proceeded to consider the independent variables x, t as functions of 
the Riemann invariants of the hyperbolic system and, after some effort, they were 
able to deduce the following hodograph transformation, (referred to as the C&G 
transformation for short) : 

$a u=- ,  
U 

( 2 . 7 ~ )  

t = c o t @  -+A , (2 1 ( 2 . 7 ~ )  

and 7 = i $ A - $ 2  (2.7d) 

which reduces the set (2.2) to a single linear equation, 

(a@.,), = @AA * (2.8) 

The transformation is such that in the hodograph plane, i.e. the (u,A)-space, the 
shoreline is always at Q = 0; this can be deduced easily by setting a = 0 in (2.7b) and 
by observing that then x = -7 cot/3, which is an equality only valid at the shoreline 
tip. 

2.4. Exact solutions of the nonlinear theory 
Equation (2.8) can be solved with standard methods. When a boundary condition is 
specified, then the method of choice is the Fourier transform technique. Defining the 
Fourier transform of $(a, A) as 

Y(a, f )  = $(u, A )  e-iAE dA, s_9, 
and, if Y(uo, &) = P ( f ) ,  then the bounded solution at u = 0 and u = 00 takes the 
form 
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If an initial condition is available instead, then one may use Hankel transform 
methods (Carrier 1966), or proceed as suggested in $2.2. 

To complete the solution of (2.8) an appropriate initial or boundary condition has 
to be specified explicitly. Carrier & Greenspan (1958) presented a general solution to 
an initial-value problem where the initial velocity u(x, to) is zero. Spielvogel (1974) 
used this solution to derive the evolution of a wave during rundown, assuming an 
initially exponentially shaped runup profile. Carrier & Greenspan also presented 
certain solutions with u(x, to) =I= 0, but for very specific initial conditions.. Tuck & 
Hwang (1972) also solved the initial-value problem. 

In general, it is difficult to specify initial or boundary data on the sloping beach 
without making restrictive assumptions about the solution ; a boundary condition 
requires specification of the solution at (zo, Vt), and an initial-condition specification 
at (to,Vx), but in practice the solution is only known at (zo 2 cotp, t < to), where to 
is the time when the wave reaches the z-location xo. Even when boundary or initial 
conditions are available in the (x,t)-space, the process of deriving the equivalent 
conditions in the (u, A)-space is not trivial. 

These difficulties have restricted the use of the Carrier & Greenspan formalism to 
problems that can be reduced directly to those solved by Carrier & Greenspan. This 
is unfortunate because some of the problems described can be circumvented. Carrier 
(1966) demonstrated how to specify a boundary cohdition when reflection from the 
beach is negligible. Another method will be presented here to specify a boundary 
condition including reflection. 

2.5. Approximate solution of the nonlinear theory 
Carrier (1966) pointed out that far from the shoreline nonlinear effects are small. The 
transformation equations can then be simplified by neglecting O(uz) terms. To the 
same order, $,, + kz and $Ju 4 +A. Using these approximations, the set of 
equations (2.7) becomes 

U '  
u=-  $u 'I = a$,,, x = &uz cot/?, t = -$A cotp. (2.10) 

These equations are uncoupled and allow direct transition from the (a,A) to the 
(z, t)-space. 

One method for specifying a boundary condition in the physical space is to use the 
solution of the equivalent linear problem, as given by (2.8). This is formally correct 
to the same order of approximation as (2.10). The obvious choice for the specification 
is the seaward boundary ; it is desirable to use the linearized form of the equation of 
motion at the furthest possible location from the initial position of the shoreline 
where the Carrier & Greenspan formalism is valid. This is the point z = X, = cot /? 
and it corresponds to the point cr = uo = 4 in the (c,h)-space. Then (2.10) implies 
that v(Xo, t )  = *$,,(4, A). The boundary condition F(&) in the (a, /\)-space is then 
determined from (2.29) by repeated application of the Fourier integral theorem. 
Assuming that $(uo, A) + 0 as A+ f co, then the solution of (2.8) follows: 

- .  * .  

the substitution K = (2/X0)& was used to simplify the expression. 
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2.6. Runup invariance in the linear and nonlinear theory 
It is interesting to compare the predictions of the linear and nonlinear theory for the 
maximum runup and minimum rundown. It will be proved that they are identical. 
The maximum runup according to the linear theory is the maximum value attained 
by the wave amplitude at the initial position of the shoreline x = 0, or 

@(k) exp [ - ik(X, + ct)] dk 
J0(2kX0) - iJ1(2kX0) 'I(0,t) = 2 (2.12) 

In the nonlinear theory the maximum runup is given by the maximum value of the 
amplitude at the shoreline 7(xs,A). (xs is the x-coordinate of the shoreline and it 
corresponds to t~ = 0.) To determine q(xs,A) one can use (2.7d) to obtain 

(2.13) 
@(K) exp [ - iKX,( 1 -+A)] 

dK-$:; 
J,(2KX0) - iJ,(2KX0) 

us = dxs/dt is the velocity of the shoreline tip. 

Setting us = 0 and t~ = 0 in the transformation equations (2.7) reduces them to 
At the point of maximum runup the velocity of the shoreline tip becomes zero. 

u = 0, 'I = : $ A ,  x = -'I cotp, t = -y cotp. (2.14) 

Substitution of these values in (2.13) reduces it to (2.12), proving that the maximum 
runup predicted by the linear theory is identical with the maximum runup predicted 
by the nonlinear theory. The same argument applies at the point of minimum 
rundown where the shoreline tip also attains zero velocity. This invariance was first 
noted by Carrier (1971) who observed that the maximum runup is given correctly by 
a linear theory (presumably (2.8)) as the maximum value of g = a$*. However, 
Carrier did not present an actual comparison between linear and nonlinear theory for 
polychromatic waveforms, and this result has been largely unrecognized. It is 
unexpected, because, as will be shown later, the amplitude-evolution data derived 
using the linear and the nonlinear theory differ most at  the initial shoreline (see, for 
example, figure 5 ) .  

3. The solitary-wave solution 
The results of the previous section will now be applied to derive a result for the 

maximum runup of a solitary wave climbing up a sloping beach. A solitary wave 
centred at x = X ,  at t = 0 has the following surface profile: 

(3.1) 
H 
d 

~ ( x ,  0) = - sech2 y(z -X, ) ,  

where y = (3H/4d)4. The function @(k) associated with this profile is derived in 
Synolakis (1986) and it is given by 

@(k) = Qk cosech (ak) e'"1, (3-2) 

where a = n/2y. Substituting this form into (2.12) and defining as &(t)  the 
dimensional surface elevation at the initial position of the shoreline, then the 
following relationship results : 

dk 
exp [ik(X, -X,-ct)]  
J0(2kX0) - iJ1(2kX0) 

!!@ = "r k cosech (ak) 
d 3 -m 

(3.3) 
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This integral can be calculated with standard methods of applied mathematics ; its 
convergence and evaluation is discussed in the Appendix. The integration result is 

The series can be simplified further by using the asymptotic form for large arguments 
of the modified Bessel functions. When 4X,y B 1, then 

(-l)n+1n~exp[-2y(X,+X,-ct)n]. (3.5) 

This form of the solution is particularly helpful for calculating the maximum runup. 
The series in (3.5) is of the form 

z (-l)n+lnixn; 

its maximum value occurs at x = 0.481 = e-0.732. This value defines the time t,, 
when the wave reaches its maximum runup as 

m 

n-1 

t,, = - X1+X,-- 
C Y 0-366). Y 

The value of the series (3.5) at t,, is s, and s,, = 0.15173. Defining as W the 
maximum value of ' ( t )  and evaluating the term 8(n~3)bm,  then the following 
expression results for the maximum runup : 

- = 2.831 (cot/?)t 
W 
d (3.7) 

This equation will be henceforth referred to as the runup law. It is formally correct 
when (H/d)f >> 0.288 tan/? - the assumption implied when using the asymptotic form 
of the Bessel functions - and when the series converges as discussed in the Appendix. 
The same result can also be derived by calculating $A from the nonlinear-theory 
solution (2.11) and then using the appropriate equations (2.14) for the shoreline 
motion. 

To derive surface profiles in the entire flow domain i t  is necessary to use the 
nonlinear theory and solve the transformation equations (2.7). The solution is given 
by 

u = -  $n 

g 

J,(&nvX,) exp [iK(XI -X, +- 
K cosech ( a ~ )  J0(2Kx,) - u1(2Kx,) 'no)1dK-~2, (3.8b) 

x = cot/?($-+ ( 3 . 8 ~ )  

and t = cot/3($-:n). (3 .8d)  
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FIQURE 2. The function f l A ( c , A )  defined by (3.9) for a solitary wave with H/d = 0.019 up a 
beach with co tp  = 19.85. 

The integrals in these equations can be evaluated directly for given (a, A) using the 
formalism of the Appendix. The function $A is shown in figure 2 as a function of 
(a,A) for the case when H / d  = 0.019, X, = 19.85 and X, = 37.35. The amplitude 
evolution predicted by (3.8b) is discussed in 85.2, where it is compared with 
laboratory data obtained with the methods discussed next. 

4. Experimental equipment 
A series of laboratory experiments was conducted to investigate the validity of the 

results derived in the previous sections. The experiments were performed in the 
40 m wave-tank facility of the W. M. Keck Laboratories of the California Institute 
of Technology. The facility consists of a wave tank, a wave generation system and 
a wave measuring system. The experimental equipment is detailed in Hammack 
(1972), Goring (1978) and Synolakis (1986). 

The wave tank has glass sidewalls and dimensions 37.73 m x 0.61 m x 0.39 m. At 
one end of the tank and at a distance of 14.68 m from the wave generator a sloping 
beach was constructed; it consisted of a ramp made out of anodized aluminium 
panels with a hydrodynamically smooth surface. The ramp was supported with a 
wooden truss which was surveyed periodically to ensure that it conformed to the 
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initial 1 : 19.85 slope. For brevity, the ramp will be referred to as the laboratory 
beach. 

The wave generation system consists of a piston attached to vertical wave plate 
which moves horizontally and displaces the adjacent fluid thereby generating waves. 
The piston is driven by a doubly actuated hydraulic cylinder controlled by a servo- 
valve which can be programmed to produce any desired piston motion. The system 
was interfaced with a PDP11/23 microprocessor which provided the required piston 
trajectory. The generation algorithm developed by Goring ( 1978) and generalized by 
Synolakis (1986) was used to compute the trajectory. The laboratory equipment 
produced near-perfect solitary waves ; near-perfect refers to waves that conform to 
the Boussinesq profile (3.1) and have a tail that does not exceed 2% of the wave 
height H. 

To measure wave heights in the constant-depth region parallel-wire resistance- 
type wave gauges were used. The gauges are constructed of steel wire of diameter 
0.025 cm and can be calibrated to measure wave heights as small as 0.1 cm. They are 
driven by HP8701 Carrier preamplifiers. However, these gauges cannot be used close 
to the shoreline; the small local depths do not permit in situ calibration, and the 
gauges cannot be calibrated offshore and moved back, because of strong boundary 
effects over the beach. (One notable success in measuring wave heights on the dry bed 
with conventional gauges has been in the work of Battjes & Roos 1974.) 

A new type of transducer was developed for this study, referred to as the runup 
gauge. It consists of an array of capacitance wave probes mounted on a n-shape 
aluminium frame. The distance between the probes is variable. The effective 
measuring length of each transducer and its distance from the tank bottom surface 
can be adjusted by sliding the probe inside its support bracket. In all applications in 
this study the transducers were equispaced and of the same length, and the tip of 
each probe was 0.1 cm from the tank bottom surface. Each probe is made of steel 
wire of 0.076 cm diameter it is fitted in a glass capillary tube which acts as the 
dielectric of the capacitor. The electronics design allows all probes to operate at the 
same frequency without any cross-talk between them. To calibrate, the runup gauge 
was moved in a programmed fashion down the ramp and changes in depth and 
voltage were recorded ; there was no influence in the calibration data from wall effects 
because the probes maintained the same distance from the sloping bottom at every 
calibration step. This operation provided flexibility for deployment a t  different 
locations, and it allowed for wave-height measurements on the dry bed. 

The runup gauge was tested dynamically by comparing its output to that of a 
conventional parallel-wire resistance-type gauge in the region of the tank where both 
types of transducers could be employed (z > 10) ; the comparison produced identical 
results. To test its performance in measuring wave runup on a dry bed, the runup 
gauge was deployed at a distance of -0.5 depths from the initial shoreline, with an 
interprobe spacing of 3.31 cm, while a movie camera was simultaneously recording 
the climb of a wave. The runup-gauge results were consistently within 3% of the 
movie data, a difference that may be attributed to errors inherent in the processing 
of cinematographic data. 

The output of all transducers was recorded digitally through the Ad1 1K interface 
of a PDP11/23 microprocessor. Typically, sixteen channels of data were recorded at 
an intersample rate of either 0.004 or 0.008 s. Analysis and display of the data were 
performed in real time. 
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5. Experimental results 
In  this section the experimental results are compared to the theory advanced in $2. 

Maximum runup data from this and other investigations are presented in $5.1. In 
$5.2, measured surface profiles are compared with the linear and the nonlinear 
theory. Additional laboratory data are presented in $6, where the validity of the 
theory is discussed. 

5.1. Maximum runup 
The maximum-runup data for breaking and non-breaking solitary waves on the 
laboratory beach are presented in figure 3 and they are also listed in table 1. The 
parameter Hld represents the maximum normalized wave height measured at a 
distance L from to toe of the beach, where L is one measure of the horizontal extent 
of the wave, and 

L = - 1 arccosh [ (&r], 
Y 

where y = (3H/4k)+. Thus, heights of longer waves were measured further from the 
beach than of shorter waves, assuring that all waves propagated through the same 
relative distance L between the measurement location and the toe of the beach. The 
parameter W l d  is the maximum excursion of the shoreline at the instant of maximum 
runup. Possibly owing to sidewall effects, the shoreline assumed a parabolic shape, 
in plan view. The runup distances defined with the minimum, average and maximum 
position of the shoreline at the instant of maximum exhibit similar dependence on 
the height-to-depth ratio. For example, for the breaking-wave data the dependence 
of maximum runup based on the maximum position of the shoreline is 

0.682 

g= d 1 . 1 0 9 6 )  , 

and based on the average position of the shoreline it takes form 
0.006 - = 0 . 9 1 8 6 )  w . 

d 

The two-dimensional character of the shoreline was repeatable and it was more 
prevalent in the breaking-wave data. 

Figure 3 includes data from experiments at  different flow depths d, where 6.25 cm 
< d < 38.32 cm. Pedersen & Gjevik (1983) reported experiments where the empirical 
runup relationships were influenced by the depth. However, in the present 
investigation and in the Hall & Watts (1953) study, a wave of a particular height- 
to-depth ratio realized similar normalized runup distances at different depths, as it 
would be expected from dimensional considerations. 

Figure 3 shows distinct runup regimes for breaking and non-breaking waves. 
Breaking on the laboratory beach occurs first during the backwash when Hld > 
0.044; breaking during runup occurs when Hld > 0.055. The asymptotic result (3.7) 
is valid for waves that do not break during runup, suggesting that it is appropriate 
to use the qualifier non-breaking for waves that do not break during runup but may 
not break during rundown. This definition was used in preparing figure 3. The 
asymptotic result appears to be describing the non-breaking-wave data quite well. 

The existence of the two different runup regimes has never been observed 
previously in single-wave runup. One possible explanation is that most experimental 



Runup of solitary waves 533 

I I I I I I I I I  1 I I 1 I I l l 1  I I l l l l l  

10- lo-' 10-1 1 

HId 

FIGURE 3. The normalized maximum runup of solitary waves up a 1 : 19.85 beach versus the 
normalized wave height. The data shown are listed in table 1. x , breaking waves; A, non-breaking 
waves; - , the runup law, (3.7). 

investigations have dealt primarily with breaking solitary waves, and, even when 
non-breaking-wave data were generated, they were grouped together with breaking- 
wave data for the purpose of deriving empirical relationships. 

To verify this observation and to draw conclusions about the application 
of the asymptotic result to other beaches, table 2 compares the runup law to 
published numerical results on non-breaking solitary-wave runup. The table 
illustrates that the asymptotic result agrees with the numerical results satisfactorily, 
except in the 45' case. However, the asymptotic result was derived assuming that 
(H/d) i  g 0.288 tan@, and it is not expected to be formally correct when tanb = 1. In 
this case, maximum-runup results derived from (3.4) agree with the numerical data 
much better. 

Comparisons of analytical results with the Hall & Watts (1953) laboratory data are 
not as straightforward as often assumed. That study includes both breaking- and 
non-breaking-wave data without differentiating between them ; empirical runup 
relationships derived there are not directly applicable when determining the runup 
of non-breaking waves. To perform a sterim' identification of those data, the 

excellent agreement with laboratory data for solitary waves (Gjevik & Pedersen 
1981) and it is discussed in $6. Figure 4 presents all the non-breaking solitary-wave 
data from that and from other studies. The asymptotic result does seem to model the 
existing laboratory data satisfactorily. Note that non-breaking data are not yet 
available for cota > 20, and with good reason. On a 1 : 100 slope, the highest non- 
breaking wave is the wave with H / d  = 0.003; such small waves are difficult to 
measure and they need a long propagation distance to develop fully. 

The identification of the non-breaking-wave data in the Hall & Watts data set and 
its comparison with the runup law (3.7) offer some insight for the reasons why the 
two regimes in solitary-wave runup have been previously overlooked in the 
numerical work. Kim et al. (1983) studied the runup of non-breaking waves on steep 
beaches; their comparison with the Hall & Watts data revealed no significant 
discrepancies because most of the Hall & Watts data for steep slopes refer to non- 

breaking criterion H/d < 0.479(cot 8)- r was used; it has been reported to be in 
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Depth 
(cm) 
6.25 
6.25 
8.01 
9.79 
9.79 
9.81 
9.84 
9.89 

13.17 
14.54 
14.54 
14.54 
14.54 
15.50 
15.67 
15.72 
15.76 
15.62 
15.65 
15.69 
16.70 
17.53 
19.42 
19.42 
19.47 
19.56 
19.62 
20.80 
20.85 
20.92 
20.92 
20.92 
21.01 
21.44 
21.47 
22.08 
23.49 
24.00 

H l d  
0.250 
0.072 
0.448 
0.078 
0.384 
0.097 
0.462 
0.236 
0.294 
0.610 
0.591 
0.607 
0.607 
0.60 1 
0.090 
0.259 
0.590 
0.298 
0.322 
0.170 
0.273 
0.276 
0.633 
0.625 
0.626 
0.283 
0.286 
0.323 
0.036 
0.188 
0.271 
0.416 
0.159 
0.160 
0.143 
0.036 
0.394 
0.048 

W l d  
0.506 
0.233 
0.723 
0.251 
0.621 
0.274 
0.659 
0.467 
0.542 
0.780 
0.790 
0.805 
0.780 
0.801 
0.270 
0.519 
0.810 
0.551 
0.591 
0.407 
0.487 
0.495 
0.842 
0.825 
0.862 
0.527 
0.513 
0.555 
0.124 
0.409 
0.513 
0.686 
0.384 
0.384 
0.366 
0.121 
0.641 
0.182 

Depth 
(cm) 
26.38 
28.43 
28.55 
29.14 
29.34 
29.35 
29.40 
29.54 
29.62 
29.63 
29.72 
29.73 
29.75 
29.77 
29.80 
29.83 
29.86 
30.00 
30.48 
30.93 
30.97 
31.06 
31.38 
33.31 
33.52 
33.55 
33.61 
33.65 
33.65 
33.76 
33.84 
34.04 
34.24 
34.29 
34.39 
35.35 
37.97 
37.99 
38.32 

H l d  
0.267 
0.039 
0.040 
0.021 
0.014 
0.051 
0.075 
0.073 
0.065 
0.055 
0.056 
0.034 
0.018 
0.009 
0.0 18 
0.027 
0.038 
0.047 
0.047 
0.188 
0.019 
0.019 
0.094 
0.009 
0.005 
0.006 
0.007 
0.028 
0.008 
0.023 
0.017 
0.024 
0.012 
0.014 
0.009 
0.193 
0.044 
0.022 
0.039 

W l d  
0.507 
0.152 
0.156 
0.076 
0.049 
0.191 
0.258 
0.248 
0.228 
0.207 
0.207 
0.144 
0.074 
0.036 
0.075 
0.108 
0.146 
0.195 
0.195 
0.425 
0.078 
0.076 
0.288 
0.041 
0.019 
0.022 
0.026 
0.123 
0.029 
0.087 
0.063 
0.098 
0.048 
0.052 
0.036 
0.426 
0.182 
0.098 
0.162 

TABLE 1. The runup of solitary waves up a 1 : 19.85 beach. Laboratory data. 

breaking waves. In the study of Pedersen & Gjevik (1983), the discrepancy of the 
numerical results for mild slopes with extrapolated values from the Hall & Watts 
study is obvious; for mild-slope beaches most of the Hall & Watts data refer to 
breaking waves. Pedersen & Gjevik reference other solitary-wave experiments and 
note that their numerical results agree with laboratory data in water of 25 cm depth 
much better than they do in water of 10 cm depth. Although it has not been possible 
to obtain the reference data set, it can be hypothesized that the 25 cm depth data set 
included more non-breaking-wave data than the 10 cm depth set; it is easier to 
generate non-breaking waves in deeper water. 
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Source cot@ 

H&H 1o.Ooo 
H&H 1o.Ooo 
KLL 3.732 
KLL 3.732 
KLL 3.732 
H&H 3.333 
H&H 3.333 
P&G 2.747 
P&G 2.747 
P&G 2.747 
P&G 2.747 
KLL 1 .Ooo 
KLL 1 .Ooo 
KLL 1 .Ooo 
KLL 1 .Ooo 

Hld 
0.030 
0.050 
0.050 
0.100 
0.200 
0.050 
0.100 
0.050 
0.098 
0.193 
0.294 
0.060 
0.100 
0.200 
0.480 

Numerical 
calculations 

0.100 
0.180 
0.135 
0.308 
0.766 
0.150 
0.310 
0.127 
0.275 
0.599 
0.958 
0.129 
0.159 
0.504 
1.610 

Runup law 
2.8314(H/d)j 

0.112 
0.212 
0.129 
0.308 
0.732 
0.122 
0.291 
0.111 
0.257 
0.600 
1.016 
0.084 
0.159 
0.379 
1.131 

Laboratory 
experiments 

na 
na 
0.173 
0.281 
0.599 
na 
na 
0.115 
0.252 
0.552 
0.898 
0.115 
0.212 
0.454 
1.270 

TABLE 2. Runup data from numerical calculations. H&H : Heitner & Housner (1970) ; KLL : Kim 
et al. (1983) ; P&G : Pedersen & Gjevik (1983). The runup-law column lists results derived by using 
(3.7). The laboratory-experiments column shows results derived from interpolation of the Hall & 
Watts (1953) data set, when possible. 

2.831 (cotp)i (H/d)t 

FIQURE 4. The normalized maximum runup of solitary waves climbing up different beaches versus 
the normalized wave height. D, cot@ = 19.85, Synolekis (1986); 0, cot@ = 11.43, Hall & Watts 
(1953); 0,  cot@= 5.67, Hall & Watts (1953); *, cot@ = 3.373, Hall & Watts (1953); A, cot@ = 
2.75, Pedersen & Gjevik (1983); +, c o t p =  2.14, Hall & Watts (1953); X ,  cotB= 1.00, Hall & 
Watts (1953); -, the runup law, (3.7). 
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5.2. Amplitude evolution 

This section examines surface profiles in detail. Two different representations of the 
data are given : profiles showing the variation with time at  fixed locations and profiles 
showing the variations in space at fixed times. 

To derive surface profiles from the linear-theory solution, (3.2) can be substituted 
directly into (2.6), and then the integral can be evaluated with standard methods or 
with the solution nlethod presented in the Appendix. Surface profiles for given (a, 
A )  can be derived from the nonlinear theory explicitly using (3.8). However, to 
compare the theory with laboratory data it is necessary to obtain values at specific 
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points in the (s,t)-plane, i.e. at points where measurements exist. Since the 
transformation equations define 7 implicitly in terms of s and t ,  whenever the 
solution was required at a particular x or a particular t ,  ( 3 . 8 ~ )  and (3 .8d)  respectively 
were solved with the method of Newton's iterations. The iterations converged 
rapidly and with little computational effort. 

Figure 5 shows the comparison among the linear-theory solution (2.6), the 
nonlinear-theory solution (3 .8b) ,  and the laboratory data for a solitary wave with 
H/d = 0.019 at four s-locations as a function of time. For s = 19.85, 9.95 and 5.10, 
there is no significant difference between the three profiles. However, closer to the 
shoreline nonlinear effects become important. Figure 5 (d) shows the same incoming 
wave measured at a distance of 0.25 depths from the shoreline. The linear theory 
overestimates the wave height substantially. An interesting feature of this surface 
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profile is its behaviour during the time interval from approximately t = 125 to 138, 
where there are no data displayed. This occurs during the backwash, when the 
shoreline retreats beyond that x-location, and there is no flow depth to be measured. 
The shoreline returns, but it does not stop moving a t  its initial position. The process 
of secondary runup begins and the shoreline behaves as an underdamped oscillator. 
This is a characteristic feature of the runup process and was observed in all the waves 
studied. 

Figure 5 also helps explain Carrier's hypothesis. Carrier (1966) hypothesized that 
far from the shoreline nonlinear effects are small, so that the linear form of the 
transformation equations (2.10) can be used. It is seen that this is indeed an excellent 
approximation. The same conclusion can also be deduced from figure 4, where the 
theory is found to predict reasonable values even for waves with H l d  = 0.5 climbing 
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FIGURE 6. The climb of a solitary wave with H / d  = 0.019 up a 1 : 19.85 beach. The normalized 
surface profiles are shown as functions of the normalized distance at different times, (a) t = 25, (b)  
30, (c) 35, (d) 40, (e) 45, (1) 50, (g) 55, (h)  60, ( i )  65, (k) 70; -, nonlinear theory. The symbols 
indicate different realizations of the same initial conditions in the laboratory. All active 
measurement locations are shown, regardless of whether the wave haa reached that location or 
not. 
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up a 45' slope, a caae where the shoreline is only one depth away from the toe of the 
beach. 

Figure 6 shows the amplitude evolution of a wave with H / d  = 0.019 at different 
time instances as it climbs up the beach. The profiles presented can be visualized as 
still photographs of the surface. The nonlinear theory appears to predict the details 
of the climb of the wave on the beach adequately. Near the shoreline tip the theory 
overestimates the wave height, but this is to be expected as viscous effects are most 
significant in that region of the flow. The same behaviour can also be observed for the 
wave with H / d  = 0.04, which is described in the next section. 

6. Validity of the solution 
The solution described in $2 is valid for functions @(k) such that the Jacobian of 

the transformation (2.7) is never equal to zero. The Jacobian becomes zero when the 
surface slope a~/az becomes infinite. In the physical plane this point is usually 
interpreted as the point of wave breaking. In  this section a relationship will be 
derived between the limiting H/d of solitary waves climbing up a plane beach of 
slope 8. 

The Jacobian of the Carrier & Greenspan transformation is #, and f = c(tz-ti). 
Since it is anticipated that the transformation becomes singular close to the 
shoreline, the Jacobian is expanded around cr = O .  Substituting (2.7~)  in the 
expression for the Jacobian and taking the limit as a+O,  then #+(&ot8/l) 
( u ~ - ) ) ~ .  Evaluating u with (3.8a), it follows that the Jacobian is always regular 

> 

when 

(6.1) 
K~ cosech ( a ~ )  exp [iK(X1 -X, + 4MI,)] dK -4 o. 

J , ( ~ K X , )  - iJ1(2~X,) 
18 F L I  186 
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The integral can be evaluated with the formalism described in the Appendix, if one 
replaces the function zcosechaz in ( A 2 )  with z3cosechaz. It can be verified by 
inspection that the radius of convergence of the resulting contour integral is the same 
as that of (A 1). The poles of the integrand are z,, where z, = nni/a, and the residues 
are given by - (nn/a)%,, where a, is defined by (A 4). For large values of 4 X o y ,  the 
terms of the resulting Laurent series can be replaced by their asymptotic form. 
Then, 

u, = - 1 2 ( n d 3 ) i X e r  ( -  l)"+ln; exp [ - ( 3 H / d ) i  (X ,+X,+$ lXo) ] .  (6.2) 
n-1 

The series C2-l ( -  l)nn%rn attains its minimum value of -0.02847 when x = 0.06530. 
This value defines the limiting H / d  when u,-$ goes through zero, as 

(6.3) 
H 
- = 0.8183(cot/?)-8. 
d 

This is a weaker restriction than that derived by Gjevik & Pedersen (1981), who 
determined that waves break when 

H 
d 
- > 0.479( cot /?)-?. (6.4) 

However, there are two basic differences between the two results. The Gjevik & 
Pedersen criterion (6.4) indicates the limiting H l d  when a solitary wave breaks 
during the backwash. Equation (6.3) indicates when a wave first breaks during 
runup. It is therefore not surprising that the former is a stronger criterion; long 
waves that do not break during runup may break during rundown. Also, the Gjevik 
& Pedersen result (6.4) was derived by using the sinusoidal wave profile that best fits 
the Boussinesq profile. Equation (6.3) is based on the actual Boussinesq profile 
(3.1). 

The breaking criteria (6.3) and (6.4) imply that as cot/?+m then the limiting 
H l d  +. 0, while on steep beaches, as cot /?-. 0, the theory is valid for relatively large 
H l d .  This is entirely consistent with the non-dispersive nature of the theory. On very 
gentle beaches where the propagation distances are large the theory applies for very 
small waves only; on steep beaches the propagation distances are small, and 
dispersive effects do not have sufficient time to develop fully. 

To visualise the two different breaking criteria, it is helpful to examine the 
Jacobian of the Carrier & Greenspan transformation in detail. Figure 7 shows 
uA-$ as a function of A as a + O ,  for the particular case when H / d  = 0.040 and 
X, = 19.85. As A decreases, the Jacobian first becomes zero at A = Aco. The first local 
maximum of uA occurs at A = Acl. This local maximum was used to determine the 
limiting H l d  in (6.3) through the series (6.2). The global maximum of U, occurs at 
A = ,IcP. This maximum corresponds to the criterion (6.4). It is the particular 
property of this Jacobian, that Reu,(O, A,*) > Reu,(O, AC1) and A,, > A,,, that 
predetermines that wave breaking will first occur during the rundown. 

It is a well-documented phenomenon that the shallow-water-wave formalism 
usually predicts wave breaking earlier than it actually happens in nature. It is 
interesting to examine what the theory predicts for the climb of solitary waves that 
are larger than the limiting value implied by both (6.3) and (6.4), but that do not 
break when realized in the laboratory. For the laboratory beach, (6.4) predicts that 
breaking first occurs in the backwash when H / d  > 0.017, while (6.3) implies that 
waves break during runup when H l d  > 0.029. Consider the climb of a wave with 
H l d  = 0.040. (This is the wave whose Jacobian is shown in figure 7.) Figure 8 shows 

' 
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FIQTJRE 7. The Jacobian of the Carrier & Greenspan transformation when H / d  = 0.040 and 
cot /I = 19.85, expanded around Q = 0. 
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FIQURE 8. The normalized surface profile of a solitary wave with H / d  = 0.040 up the laboratory 
beach, approximately when the Jacobian becomes singular, t = 36; -, nonlinear theory. 

X 

the wave profile, approximately when the Jacobian first goes through zero. The 
solution becomes multivalued and the wave is seen to curl over. However, the 
laboratory realization of the same wave does not exhibit breaking. 

On intuitive grounds it is expected that beyond A, (where aq/ax+oo) any 
transformation of results back to the (x,t)-plane will be meaningless. This is also 
suggested from the existing numerical simulations of the climb of breaking waves, 
where the solution becomes unbounded soon after the slope of the wavefront becomes 
infite.  It is therefore surprising to discover that the analytical solution recovers and 
subsequent surface profiles are stable, well-defined, continuous functions. The same 
behaviour was observed by Tuck & Hwang (1972) when they attempted to calculate 
surface profiles beyond breaking. They noted that the linear-theory solution could be 
formally recovered from the post-breaking profiles, and they speculated that they 

18-2 
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FIGURE 9(a-d). For caption see facing page. 
X 

should have practical significance. It is intriguing to observe how well these profiles 
compare with those realized in the physical model. Figure 9(a, b, c )  shows surface 
profiles before, and figure 9 (d, e, f, g, h) shows profiles after, breaking. The nonlinear 
theory models the laboratory data equally well before and after breaking. The same 
phenomenon occurs during the rundown. 

To understand this apparent paradox, one must realize that the solution beyond 
A, may not be the valid solution to the original boundary-value problem, but it is 
a valid solution to a new boundary-value problem with boundary values specified a t  
(0, /Ico+ 6A). What figure 9 indicates is that the solution beyond breaking is relatively 
insensitive to the amplitude profile at breaking. This phenomenon appears to be a 
manifestation of the same process that allows for Whitham’s bore rule which 
postulates that the solution for the problem of the climb of a bore up a beach may 
be determined, approximately, by applying the relationships valid at the bore front 
behind it, i.e. the details of the solution at the front may not be essential in the 
subsequent evolution of the wave. 
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FIQURE 9. The climb of a solitary wave with H / d  = 0.040 up the laboratory beach. The normalized 
amplitude surface profiles are shown aa functions of the normalized distance a t  different times, (a) 
t = 20, ( b )  26, (c) 32, (d) 38, (e) 44, ( f ) t  = 50, (8) 56, (h) 62; -, nonlinear theory. Breaking in the 
theoretical development occurs during runup at  t % 36 and during the rundown at t 60. 

7. Summary and conclusions 
In the previous sections a theory has been presented and an asymptotic result has 

been derived for the runup of non-breaking solitary waves on plane beaches. Detailed 
measurements of the runup height and of the climb of solitary waves have also been 
presented. There are four major conclusions : 

(i) The linear and nonlinear theories predict that the maximum runup of non- 
breaking waves is given by the runup law (3.7) : 

- = 2.831(cotB)& 
w 
d 

(ii) The runup variation is different for breaking and non-breaking solitary 
waves. 
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(iii) Surface profiles derived from the nonlinear theory model the climb of non- 
breaking waves adequately. 

(iv) Different criteria apply for determining if a solitary wave of given height-to- 
depth ratio will break as it climbs up a sloping beach and for determining if it  will 
break during the rundown. 

I would like to thank Fred Raichlen for suggesting the topic and for arranging for 
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Foundation and the California Institute of Technology. Funding was also provided 
by the Alexander Onassis Public Benefit Foundation and the University of Southern 
California. I am grateful to George Carrier, Bob Guza and Fred Browand for many 
interesting suggestions. 

Appendix. Evaluation of the runup integral 

by the contour W :  
Consider the integral I% defined in the domain 9 in the upper half-plane bounded 

z cosech (az) eize 
~ c ( t )  = fJ,(2x0 2 )  - iJ,(2x0 2 )  dz 3 

where 0 = X,-X,-ct. The contour V consists of a positively oriented semicircle of 
radius IzI = r, 0 < argz < n with its centre a t  the origin and of the real-axis segment 
( - T ,  T ) .  The integral converges in 9 for all 0 such that - (2X0 + 0 )  IIm zl < alRe zl. For 
arbitrary a, the integral converges Vt  such that 

X,+X,-ct > 0. 

When Imz < 0, the integral converges in the sector defined by 

a~Rez(+(X,-3Xo--ct)JImz~ < 0 .  

The function J,(z)-iJ,(z) has no zeroes in the upper half-plane (Synolakis 1988). 
The only poles of the integrand inside 9 are then the poles of numerator, 2, = 
nni/a, n = 1,2 ,3  .... The residue at these poles is a,, given by 

(-I),@) exp( -Fo) 
a, = i 

Then, by the Cauchy integral formula 

I&) can be broken into two integrals: one integral I , ( t )  along the real axis and 
another l o ( t )  along the semicircle. For large r,  I ,( t)+O by Jordan’s lemma. Then 
I&) = I , ( t )  and (3.4) follows directly. 
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